6,194 research outputs found

    Obesity prevention strategies: could food or soda taxes improve health?

    Get PDF
    Evidence shows that one of the main causes for rising obesity rates is excessive consumption of sugar, which is due in large part to the high sugar content of most soda and juice drinks and junk foods. Worryingly, UK and global populations are consuming increasing amounts of sugary drinks and junk foods (high in salt, sugar and saturated fats). However, there is raised public awareness, and parents in particular want something to be done to curb the alarming rise in childhood obesity. Population-wide policies (i.e. taxation, regulation, legislation, reformulation) consistently achieve greater public health gains than interventions and strategies targeted at individuals. Junk food and soda taxes are supported by increasing evidence from empirical and modelling studies. The strongest evidence base is for a tax on sugar sweetened beverages, but in order to effectively reduce consumption, that taxation needs to be at least 20%. Empirical data from a number of countries which have implemented a duty on sugar or sugary drinks shows rapid, substantial benefits. In the UK, increasing evidence from recent scientific reports consistently support substantial reductions in sugar consumption through comprehensive strategies which include a tax. Furthermore, there is increasing public support for such measures. A sugar sweetened beverages tax will happen in the UK so the question is not 'If?' but 'When?' this tax will be implemented. And, crucially, which nation will get there first? England, Ireland, Scotland or Wales

    Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts

    Get PDF
    In human adult erythroid cells, lower than normal levels of Krüppel-like transcription factor 1 (KLF1) are generally associated with decreased adult β- and increased fetal γ-globin gene expression. KLF1 also regulates BCL11A, a known repressor of adult γ-globin expression. In seeming contrast to the findings in adult cells, lower amounts of KLF1 correlate with both reduced embryonic and reduced fetal β-like globin mRNA in mouse embryonic erythroid cells. The role of KLF1 in primary human fetal erythroid cells, which express both γ- and β-globin mRNA, is less well understood. Therefore, we studied the role of KLF1 in ex vivo differentiated CD34+ umbilical cord blood cells (UCB erythroblasts), representing the fetal milieu. In UCB erythroblasts, KLF1 binds to the β-globin locus control region (LCR), and the β-globin promoter. There is very little KLF1 binding detectable at the γ-globin promoter. Correspondingly, when cultured fetal UCB erythroblasts are subjected to lentiviral KLF1 knockdown, the active histone mark H3K4me3 and RNA pol II recruitment are diminished at the β- but not the γ-globin gene. The amount of KLF1 expression strongly positively correlates with β-globin mRNA and weakly positively correlates with BCL11A mRNA. With modest KLF1 knockdown, mimicking haploinsufficiency, γ-globin mRNA is increased in UCB erythroblasts, as is common in adult cells. However, a threshold level of KLF1 is evidently required, or there is no absolute increase in γ-globin mRNA in UCB erythroblasts. Therefore, the role of KLF1 in γ-globin regulation in fetal erythroblasts is complex, with both positive and negative facets. Furthermore, in UCB erythroblasts, diminished BCL11A is not sufficient to induce γ-globin in the absence of KLF1. These findings have implications for the manipulation of BCL11A and/or KLF1 to induce γ-globin for therapy of the β-hemoglobinopathies

    The redox-active drug metronidazole and thiol-depleting garlic compounds act synergistically in the protist parasite Spironucleus vortens

    Get PDF
    Spironucleus vortens is a protozoan parasite associated with significant mortalities in the freshwater angelfish, Pterophyllum scalare. Control of this parasite is especially problematic due to restrictions on the use of the drug of choice, metronidazole (MTZ), on fish farms. Use of garlic (Allium sativum) is undergoing a renaissance following experimental validations of its antimicrobial efficiency. Ajoene ((E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide), is a stable transformation product of allicin, the primary biologically active component of garlic. In the current study, an ajoene oil crude extract had a minimum inhibitory concentration (MIC) of 40 μg/ml against S. vortens. GC-MS and NMR spectroscopy revealed this ajoene extract contained a mixture of the (E) and (Z)-ajoene isomers along with diallyl disulphide (DADS) and diallyl trisulphide (DATS). The only component of the ajoene crude oil found to substantially inhibit S. vortens growth by optical density monitoring (Bioscreen C Reader) was (Z)-ajoene (MIC 16 μg/ml). Ajoene oil acted in synergy with MTZ in vitro, reducing the individual MIC of this drug (4 μg/ml) by 16-fold, and that of ajoene oil by 200-fold with a fractional inhibitory concentration (FIC) index of 0.263. This synergistic interaction was confirmed in vivo. S. vortens-infected P. scalare angelfish dosed orally with 0.5% (v/w) MTZ combined with 0.05% (v/w) ajoene displayed a significant reduction in faecal trophozoite count, whilst those fed on 0.5% MTZ flakes (half the recommended oral dose) alone did not. This study demonstrates for the first time the synergistic interaction between the synthetic drug MTZ and natural ajoene oil both in vitro and in vivo. Future work should evaluate the potential synergy of ajoene and MTZ against MTZ-resistant bacteria and protists

    Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts

    Get PDF
    In human adult erythroid cells, lower than normal levels of Krüppel-like transcription factor 1 (KLF1) are generally associated with decreased adult β- and increased fetal γ-globin gene expression. KLF1 also regulates BCL11A, a known repressor of adult γ-globin expression. In seeming contrast to the findings in adult cells, lower amounts of KLF1 correlate with both reduced embryonic and reduced fetal β-like globin mRNA in mouse embryonic erythroid cells. The role of KLF1 in primary human fetal erythroid cells, which express both γ- and β-globin mRNA, is less well understood. Therefore, we studied the role of KLF1 in ex vivo differentiated CD34+ umbilical cord blood cells (UCB erythroblasts), representing the fetal milieu. In UCB erythroblasts, KLF1 binds to the β-globin locus control region (LCR), and the β-globin promoter. There is very little KLF1 binding detectable at the γ-globin promoter. Correspondingly, when cultured fetal UCB erythroblasts are subjected to lentiviral KLF1 knockdown, the active histone mark H3K4me3 and RNA pol II recruitment are diminished at the β- but not the γ-globin gene. The amount of KLF1 expression strongly positively correlates with β-globin mRNA and weakly positively correlates with BCL11A mRNA. With modest KLF1 knockdown, mimicking haploinsufficiency, γ-globin mRNA is increased in UCB erythroblasts, as is common in adult cells. However, a threshold level of KLF1 is evidently required, or there is no absolute increase in γ-globin mRNA in UCB erythroblasts. Therefore, the role of KLF1 in γ-globin regulation in fetal erythroblasts is complex, with both positive and negative facets. Furthermore, in UCB erythroblasts, diminished BCL11A is not sufficient to induce γ-globin in the absence of KLF1. These findings have implications for the manipulation of BCL11A and/or KLF1 to induce γ-globin for therapy of the β-hemoglobinopathies

    Radio emission models of Colliding-Wind Binary Systems

    Full text link
    We present calculations of the spatial and spectral distribution of the radio emission from a wide WR+OB colliding-wind binary system based on high-resolution hydrodynamical simulations and solutions to the radiative transfer equation. We account for both thermal and synchrotron radio emission, free-free absorption in both the unshocked stellar wind envelopes and the shocked gas, synchrotron self-absorption, and the Razin effect. The applicability of these calculations to modelling radio images and spectra of colliding-wind systems is demonstrated with models of the radio emission from the wide WR+OB binary WR147. Its synchrotron spectrum follows a power-law between 5 and 15 GHz but turns down to below this at lower and higher frequencies. We find that while free-free opacity from the circum-binary stellar winds can potentially account for the low-frequency turnover, models that also include a combination of synchrotron self-absorption and Razin effect are favoured. We argue that the high-frequency turn down is a consequence of inverse-Compton cooling. We present our resulting spectra and intensity distributions, along with simulated MERLIN observations of these intensity distributions. From these we argue that the inclination of the WR147 system to the plane of the sky is low. We summarise by considering extensions of the current model that are important for models of the emission from closer colliding wind binaries, in particular the dramatically varying radio emission of WR140.Comment: 18 pages, 18 figures; Accepted by Astronomy and Astrophysics, July 8, 200

    Expressing the operations of quantum computing in multiparticle geometric algebra

    Get PDF
    We show how the basic operations of quantum computing can be expressed and manipulated in a clear and concise fashion using a multiparticle version of geometric (aka Clifford) algebra. This algebra encompasses the product operator formalism of NMR spectroscopy, and hence its notation leads directly to implementations of these operations via NMR pulse sequences.Comment: RevTeX, 10 pages, no figures; Physics Letters A, in pres

    Systematic review of dietary salt reduction policies: Evidence for an effectiveness hierarchy?

    Get PDF
    Background: Non-communicable disease (NCD) prevention strategies now prioritise four major risk factors: food, tobacco, alcohol and physical activity. Dietary salt intake remains much higher than recommended, increasing blood pressure, cardiovascular disease and stomach cancer. Substantial reductions in salt intake are therefore urgently needed. However, the debate continues about the most effective approaches. To inform future prevention programmes, we systematically reviewed the evidence on the effectiveness of possible salt reduction interventions. We further compared “downstream, agentic” approaches targeting individuals with “upstream, structural” policy-based population strategies. Methods: We searched six electronic databases (CDSR, CRD, MEDLINE, SCI, SCOPUS and the Campbell Library) using a pre-piloted search strategy focussing on the effectiveness of population interventions to reduce salt intake. Retrieved papers were independently screened, appraised and graded for quality by two researchers. To facilitate comparisons between the interventions, the extracted data were categorised using nine stages along the agentic/structural continuum, from “downstream”: dietary counselling (for individuals, worksites or communities), through media campaigns, nutrition labelling, voluntary and mandatory reformulation, to the most “upstream” regulatory and fiscal interventions, and comprehensive strategies involving multiple components. Results: After screening 2,526 candidate papers, 70 were included in this systematic review (49 empirical studies and 21 modelling studies). Some papers described several interventions. Quality was variable. Multi-component strategies involving both upstream and downstream interventions, generally achieved the biggest reductions in salt consumption across an entire population, most notably 4g/day in Finland and Japan, 3g/day in Turkey and 1.3g/day recently in the UK. Mandatory reformulation alone could achieve a reduction of approximately 1.45g/day (three separate studies), followed by voluntary reformulation (-0.8g/day), school interventions (-0.7g/day), short term dietary advice (-0.6g/day) and nutrition labelling (-0.4g/day), but each with a wide range. Tax and community based counselling could, each typically reduce salt intake by 0.3g/day, whilst even smaller population benefits were derived from health education media campaigns (-0.1g/day). Worksite interventions achieved an increase in intake (+0.5g/day), however, with a very wide range. Long term dietary advice could achieve a -2g/day reduction under optimal research trial conditions; however, smaller reductions might be anticipated in unselected individuals. Conclusions: Comprehensive strategies involving multiple components (reformulation, food labelling and media campaigns) and “upstream” population-wide policies such as mandatory reformulation generally appear to achieve larger reductions in population-wide salt consumption than “downstream”, individually focussed interventions. This ‘effectiveness hierarchy’ might deserve greater emphasis in future NCD prevention strategies

    The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Get PDF
    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation

    Representation in Westminster in the 1990s : The ghost of Edmund Burke

    Get PDF
    Why are 'trustee' notions of representation still invoked in the UK House of Commons in the 1990s? In answering this question this article analyses the premises of Burkean theory and the arguments that these premises are of little relevance in the late twentieth century. Despite these dismissals of trusteeship, Burkean ideas are still articulated in the Commons some 200 years after they were first voiced. The idea of trusteeship can prove extremely useful to justify the actions of representatives when those actions conflict with constituency 'opinion', party policy or the wishes of interest groups. Examples of the occasions when Burkean notions have been invoked in the 1990s are provided
    corecore